Closing today: HW_4A, 4B, 4C (6.4,6.5)
Closing Wed: HW_5A, 5B, 5 C (7.1,7.2,7.3)

7.1 Integration by Parts

Goal: We will reverse the product rule. This method will help us evaluate integrals involving products, logs or inverse trig.

Before we start, add these to your basic list of integrals:

$$
\begin{array}{ll}
\int \sin (a x) d x & =-\frac{1}{a} \cos (a x)+C \\
\int \cos (a x) d x & =\frac{1}{a} \sin (a x)+C \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}+C
\end{array}
$$

Derivation of Integration By Parts

The product rule says:

$$
u(x) v^{\prime}(x)+v(x) u^{\prime}(x)=\frac{d}{d x}(u(x) v(x))
$$

which can be written as
$\int u(x) v^{\prime}(x) d x+\int v(x) u^{\prime}(x) d x=u(x) v(x)$

Example:

$$
\int x \cos (x) d x
$$

Step 1: Choose u and $d v$.
Step 2: Compute $d u$ and v. Step 3: Use formula (and hope)

Writing this in terms of the differentials:

$$
d v=v^{\prime}(x) d x \text { and } d u=u^{\prime}(x) d x
$$

we have

$$
\int u d v+\int v d u=u v
$$

which we rearrange to get

Integration by Parts formula:

$$
\int u d v=u v-\int v d u
$$

Notes:

1. The symbols u and v don't ever appear in the integration. They are just locations in the formula (no variables are changing, this is not substitution).
$2 . u$ and $d v$ completely split up the integrand. So once you chose u, then $d v$ is everything else.
2. The goal is to make
$\int v d u$ "nicer" than $\int u d v$
(a) Pick $u=$ "something that gives a derivative that is simpler than the original u"
(b) Pick $d v=$ "something that you can integrate"
(c) And see if v du is something in our table!
